Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystallization of isolated amorphous zones in semiconductors

Identifieur interne : 00D839 ( Main/Repository ); précédent : 00D838; suivant : 00D840

Crystallization of isolated amorphous zones in semiconductors

Auteurs : RBID : Pascal:03-0354105

Descripteurs français

English descriptors

Abstract

Thermal annealing, irradiation with electrons (25-300keV), and irradiation with photons (hν= 2.33-3.88 eV) have been used to stimulate the crystallization of isolated amorphous zones in Si, Ge, GaAs, GaP and InP. Transmission electron microscopy and computer image analysis were used to determine the crystallization processes. For all materials, thermally stimulated crystallization occurred only at temperatures above 373 K. The electron-stimulated crystallization rate is sensitive to the electron energy. Initially, the rate decreases with increasing energy until it reaches a minimum at about one half the threshold displacement energy and then it increases. It is insensitive to the irradiation temperature between 90 and 300 K and to the crystal orientation. The effective diameter of the amorphous zone initially shrinks linearly with increasing electron dose. For the laser-induced crystallization experiments the crystallization rate in Si, but not in Ge, was sensitive to the temperature, with a faster rate occurring at 300 K than at 90 K. The photon and electron stimulated crystallization results indicate that a non-displacive mechanism causes bond breakage at the amorphous-crystalline interlace. The re-formation of these interfacial bonds is responsible for the amorphous-to-crystalline transition.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0354105

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Crystallization of isolated amorphous zones in semiconductors</title>
<author>
<name sortKey="Jencic, I" uniqKey="Jencic I">I. Jencic</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Jozef Stefan Institute, Jamova 39</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Slovénie</country>
<wicri:noRegion>1000 Ljubljana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hollar, E P" uniqKey="Hollar E">E. P. Hollar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering. University of Illinois, 1304 West Green Street</s1>
<s2>Urbana, Illinois 61801</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Urbana, Illinois 61801</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Robertson, I M" uniqKey="Robertson I">I. M. Robertson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering. University of Illinois, 1304 West Green Street</s1>
<s2>Urbana, Illinois 61801</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Urbana, Illinois 61801</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0354105</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 03-0354105 INIST</idno>
<idno type="RBID">Pascal:03-0354105</idno>
<idno type="wicri:Area/Main/Corpus">00CC37</idno>
<idno type="wicri:Area/Main/Repository">00D839</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1478-6435</idno>
<title level="j" type="abbreviated">Philos. mag. : (2003, Print)</title>
<title level="j" type="main">Philosophical magazine : (2003. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amorphous state</term>
<term>Crystallization</term>
<term>Electron beams</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>Gallium phosphides</term>
<term>Germanium</term>
<term>Indium phosphides</term>
<term>Kinetics</term>
<term>Laser beams</term>
<term>Photon beams</term>
<term>Physical radiation effects</term>
<term>Semiconductor materials</term>
<term>Silicon</term>
<term>Thermal annealing</term>
<term>Ultraviolet radiation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Etat amorphe</term>
<term>Semiconducteur</term>
<term>Silicium</term>
<term>Germanium</term>
<term>Gallium arséniure</term>
<term>Gallium phosphure</term>
<term>Indium phosphure</term>
<term>Recuit thermique</term>
<term>Effet physique rayonnement</term>
<term>Faisceau électron</term>
<term>Faisceau photon</term>
<term>Faisceau laser</term>
<term>Rayonnement UV</term>
<term>Cristallisation</term>
<term>Cinétique</term>
<term>InP</term>
<term>As Ga</term>
<term>Ga P</term>
<term>In P</term>
<term>8110J</term>
<term>6180B</term>
<term>6180F</term>
<term>Ge</term>
<term>Si</term>
<term>GaAs</term>
<term>GaP</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thermal annealing, irradiation with electrons (25-300keV), and irradiation with photons (hν= 2.33-3.88 eV) have been used to stimulate the crystallization of isolated amorphous zones in Si, Ge, GaAs, GaP and InP. Transmission electron microscopy and computer image analysis were used to determine the crystallization processes. For all materials, thermally stimulated crystallization occurred only at temperatures above 373 K. The electron-stimulated crystallization rate is sensitive to the electron energy. Initially, the rate decreases with increasing energy until it reaches a minimum at about one half the threshold displacement energy and then it increases. It is insensitive to the irradiation temperature between 90 and 300 K and to the crystal orientation. The effective diameter of the amorphous zone initially shrinks linearly with increasing electron dose. For the laser-induced crystallization experiments the crystallization rate in Si, but not in Ge, was sensitive to the temperature, with a faster rate occurring at 300 K than at 90 K. The photon and electron stimulated crystallization results indicate that a non-displacive mechanism causes bond breakage at the amorphous-crystalline interlace. The re-formation of these interfacial bonds is responsible for the amorphous-to-crystalline transition.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1478-6435</s0>
</fA01>
<fA03 i2="1">
<s0>Philos. mag. : (2003, Print)</s0>
</fA03>
<fA05>
<s2>83</s2>
</fA05>
<fA06>
<s2>22</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Crystallization of isolated amorphous zones in semiconductors</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JENCIC (I.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HOLLAR (E. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ROBERTSON (I. M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Jozef Stefan Institute, Jamova 39</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science and Engineering. University of Illinois, 1304 West Green Street</s1>
<s2>Urbana, Illinois 61801</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>2557-2571</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>134A3</s2>
<s5>354000119942750020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>35 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0354105</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Philosophical magazine : (2003. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Thermal annealing, irradiation with electrons (25-300keV), and irradiation with photons (hν= 2.33-3.88 eV) have been used to stimulate the crystallization of isolated amorphous zones in Si, Ge, GaAs, GaP and InP. Transmission electron microscopy and computer image analysis were used to determine the crystallization processes. For all materials, thermally stimulated crystallization occurred only at temperatures above 373 K. The electron-stimulated crystallization rate is sensitive to the electron energy. Initially, the rate decreases with increasing energy until it reaches a minimum at about one half the threshold displacement energy and then it increases. It is insensitive to the irradiation temperature between 90 and 300 K and to the crystal orientation. The effective diameter of the amorphous zone initially shrinks linearly with increasing electron dose. For the laser-induced crystallization experiments the crystallization rate in Si, but not in Ge, was sensitive to the temperature, with a faster rate occurring at 300 K than at 90 K. The photon and electron stimulated crystallization results indicate that a non-displacive mechanism causes bond breakage at the amorphous-crystalline interlace. The re-formation of these interfacial bonds is responsible for the amorphous-to-crystalline transition.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A10J</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60A80B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60A80F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Etat amorphe</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Amorphous state</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Gallium phosphure</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium phosphides</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium phosphure</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium phosphides</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Recuit thermique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Thermal annealing</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Recocido térmico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Effet physique rayonnement</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Physical radiation effects</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Faisceau électron</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Electron beams</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Faisceau photon</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Photon beams</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Faisceau laser</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Laser beams</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Rayonnement UV</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Ultraviolet radiation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Cristallisation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Crystallization</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Cinétique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Kinetics</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Ga P</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8110J</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>6180B</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>6180F</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Ge</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>GaP</s0>
<s4>INC</s4>
<s5>95</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Non métal</s0>
<s2>NC</s2>
<s5>18</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Nonmetals</s0>
<s2>NC</s2>
<s5>18</s5>
</fC07>
<fC07 i1="02" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>81</s5>
</fC07>
<fC07 i1="02" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>81</s5>
</fC07>
<fN21>
<s1>251</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00D839 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00D839 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:03-0354105
   |texte=   Crystallization of isolated amorphous zones in semiconductors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024